6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance.

نویسندگان

  • Natalia Issaeva
  • Huw D Thomas
  • Tatjana Djureinovic
  • Janneke E Jaspers
  • Ivaylo Stoimenov
  • Suzanne Kyle
  • Nicholas Pedley
  • Ponnari Gottipati
  • Rafal Zur
  • Kate Sleeth
  • Vicky Chatzakos
  • Evan A Mulligan
  • Cecilia Lundin
  • Evgenia Gubanova
  • Ariena Kersbergen
  • Adrian L Harris
  • Ricky A Sharma
  • Sven Rottenberg
  • Nicola J Curtin
  • Thomas Helleday
چکیده

Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand breaks (DSB) that are repaired by HR. Furthermore, we show that 6TG is as efficient as a PARP inhibitor in selectively killing BRCA2-defective tumors in a xenograft model. Spontaneous BRCA1-defective mammary tumors gain resistance to PARP inhibitors through increased P-glycoprotein expression. Here, we show that 6TG efficiently kills such BRCA1-defective PARP inhibitor-resistant tumors. We also show that 6TG could kill cells and tumors that have gained resistance to PARP inhibitors or cisplatin through genetic reversion of the BRCA2 gene. Although HR is reactivated in PARP inhibitor-resistant BRCA2-defective cells, it is not fully restored for the repair of 6TG-induced lesions. This is likely to be due to several recombinogenic lesions being formed after 6TG. We show that BRCA2 is also required for survival from mismatch repair-independent lesions formed by 6TG, which do not include DSBs. This suggests that HR is involved in the repair of 6TG-induced DSBs as well as mismatch repair-independent 6TG-induced DNA lesion. Altogether, our data show that 6TG efficiently kills BRCA2-defective tumors and suggest that 6TG may be effective in the treatment of advanced tumors that have developed resistance to PARP inhibitors or platinum-based chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells.

Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) is activated by DNA single-strand breaks (SSB) or at stalled replication forks to facilitate DNA repair. Inhibitors of PARP efficiently kill breast, ovarian, or prostate tumors in patients carrying hereditary mutations in the homologous recombination (HR) genes BRCA1 or BRCA2 through synthetic lethality. Here, we surprisingly show that PARP1 is hypera...

متن کامل

Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1.

PARP inhibitors are currently being used in clinical trials to treat BRCA1- or BRCA2-defective tumors, based on the synthetic lethal interaction between PARP1 and BRCA1/2-mediated homologous recombination (HR). However, the molecular mechanisms that drive this synthetic lethality remain unclear. Here, we show increased levels of Mre11, a key component of MRN (Mre11-Rad50-Nbs1) complex that play...

متن کامل

Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors?

PARP inhibition is synthetic lethal with defective DNA repair via homologous recombination. Phase I and II clinical trials show that PARP inhibitors are effective at well-tolerated doses and have antitumor activity for BRCA1- and BRCA2-associated cancers. However, not all patients respond equally well and tumors may eventually become resistant. Thus far, the only resistance mechanism that has b...

متن کامل

Molecular and Cellular Pathobiology Mre11-Dependent Degradation of Stalled DNA Replication Forks Is Prevented by BRCA2 and PARP1

PARP inhibitors are currently being used in clinical trials to treat BRCA1or BRCA2-defective tumors, based on the synthetic lethal interaction between PARP1 and BRCA1/2-mediated homologous recombination (HR). However, the molecular mechanisms that drive this synthetic lethality remain unclear. Here, we show increased levels of Mre11, a key component of MRN (Mre11-Rad50-Nbs1) complex that plays ...

متن کامل

Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 15  شماره 

صفحات  -

تاریخ انتشار 2010